CURRENT STATE SPACE PHOTOVOLTAICS
Table of contents
Share
QR
Metrics
CURRENT STATE SPACE PHOTOVOLTAICS
Annotation
PII
S0233-36190000622-2-1
Publication type
Article
Status
Published
Pages
29-45
Abstract

Traditional and perspective designs of photovoltaic converters (PECs) are analyzed. It is shown that the choice of PES design and materials directly affects the output characteristics of the solar battery (SB) of a spacecraft (SC), its overall dimensions, as well as the degree of reliability of the spacecraft power supply system depending on the operated orbit. The use of Si-based FEPs provides a balance of high efficiency and low cost of the BS for low orbits for 5-7 years. The use of FEPs based on semiconductor materials AIIIBV due to their more advanced characteristics is most justified for orbits with harsh operating conditions for 15 years and more. It is shown that the main direction of FEP improvement in terms of semiconductor structure is aimed at reducing its thickness (mass) and increasing the number of cascades, which contributes to improving the radiation resistance of the device as a whole.

Keywords
analysis, traditional designs, advanced designs, photovoltaic converters, design selection, materials, output characteristics, solar battery, spacecraft, power supply system, operational orbit, efficiency, low orbits, semiconductor materials, thickness, mass, number of stages, radiation resistance
Date of publication
04.04.2024
Number of purchasers
9
Views
77
Readers community rating
0.0 (0 votes)
Cite Download pdf 100 RUB / 1.0 SU

To download PDF you should pay the subscribtion

Full text is available to subscribers only
Subscribe right now
Only article and additional services
Whole issue and additional services
All issues and additional services for 2024

References



Additional sources and materials

1. 	Zernov A.S., Nikolaev V.D. Opyt ehkspluatatsii solnechnykh batarej sluzhebnogo modulyamezhdunarodnoj kosmicheskoj stantsii // Kosmicheskaya tekhnika i tekhnologii. Opyt ehkspluatatsii solnechnykh batarej sluzhebnogo modulya.2016. № 1. Vyp. 12.	 
2. Analiz konstruktsij perspektivnykh solnechnykh batarej kosmicheskikh apparatov / M.V. Ryabtseva,A.A. Lebedev, A.A. Naumova i dr. // Inzhenernyj zhurnal: nauka i innovatsii. 2022. Vyp. 3.
3. SCREAM: A new code for solar cell degradation prediction using the displacement damage dose approach / S.R. Messenger, E.M. Jackson, Warner J.H. et al. // 35th IEEE Photovoltaic Specialists Conference. 2010.
4. Kuz'mina N.A. Sistema ehnergosnabzheniya kosmicheskogo apparata // Reshetnyovskie chteniya. Sistemy upravleniya, kosmicheskaya navigatsiya i svyaz'. 2017.
5. Kozhevnikova L.A. Solnechnye ehlementy i batarei kosmicheskogo primeneniya. Reshetnyovskie chteniya. 2018.
6. Modeling the effect of 1MeV electron irradiation on the performance of n+-p-p+ silicon space solar cells / A. Hamache, N. Sengouga, A. Meftah et al. // Radiation Physics and Chemistry. 2016. Vol. 123.
7. Obzor sovremennykh fotoehlektricheskikh preobrazovatelej kosmicheskogo naznacheniya na osnove soedinenij AIIIBV / E. V. Slyschenko, A.A. Naumova, A.A. Lebedev i dr. // Sibirskij zhurnal nauki i tekhnologij. 2018. T. 19. № 2.
8. Tam zhe.
9. Skabara P., Malik M.A. Nanostructured Materials for Type III Photovoltaics // Nanoscience & Nanotechnology. Royal Society of Chemistry. 2017.
10. Murphy O. Optimizing the fabrication process for next generation nano-textured solar cells with high conversion efficiency using industrially viable solar cell processes. Technological University Dublin. 2022.
11. Emel'yanov V.M., Kalyuzhnyj N.A., Mintairov S.A. Mnogoperekhodnye solnechnye ehlementy s brehggovskimi otrazhatelyami na osnove struktur GaInP/GaInAs/Ge // Fizika i tekhnika poluprovodnikov. 2010. T. 44. Vyp. 12.
12. Investigation of the effect of chemical pre-treatment on uniformity of the silicon wafer texturing for manufacturing a solar cell / D. Kudryashov, A. Gudovskikh, A. Rodin et al. 2018. J. Phys: Conf.Series. № 1124.
13. Tam zhe.
14. 00-period, 1.23-eV bandgap InGaAs/GaAsP quantum wells for high-efficiency GaAs solar cells: Toward current-matched Gebased tandem cells /H. Fujii, K. Toprasertpong, Yu. Wang et al. // Prog.Photovolt., Res. Appl.- 2013. Vol. 22.
15. Chaffin R.J., Osbourn G.C. Quantum well multijunction photovoltaic cell // Patent USA: US4688068A. 1987.
16. Kotamraju S., Sukeerthi M., Puthanveettil S.E. Modeling of InGaP/InGaAs-GaAsP/Ge multiple quantum well solar cell to improve efficiency for space applications // Solar Energy. 2019. Vol. 186.
17. N incorporation and optical properties of GaAsNepilayers on (311) A/B GaAs substrates / X. Han,H. Suzuki, J.-H. Lee et al. // Journal of Physics D: Applied Physics. 2011. Vol. 44. № 1.
18. Shvarts M.Z. Modeli i metody otsenok i prognozirovaniya radiatsionnoj stojkosti A3V5 FP //Doklad NTS AO «NPP “Kvant”». 2021.
19. Rodriguez E. Solar Cell Efficiency vs. Module Power Output: Simulation of a Solar Cell in a CPV Module // Solar Cells - Research and Application Perspectives. 2013.
20. Wafer-bonded GaInP / GaAs / Si solar cells with 30 % efficiency under concentrated sunlight / S. Essig, J. Benick, M. Schachtner et al. / IEEE J. Photovoltaics. 2015. Vol. 5. № 3.
21. III-V-on-silicon solar cells reaching 33 % photoconversion efficiency in two-terminal configuration / R. Cariou, J. Benick, F. Feldmann et al. //Nature Energy. 2018. Vol. 3. № 4.
22. Kazanskij A.G. Tonkoplyonochnye kremnievye solnechnye ehlementy na gibkikh podlozhkakh //REhNSIT. Radioehlektronika. 2015. T. 7. № 1.
23. Mughal Sh., Sood Y.R., Jarial R.K. A Review on Solar Photovoltaic Technology and Future Trends // International Journal of Scientific Research in Computer Science. Engineering and Information Technology. 2018. Vol. 4. № 1.
24. Efficiency improvement of CIGS solar cells by a modified rear contact / W. Li, X. Yan, W.-L. Xu, J. Long et al. / Solar Energy. 2017. T. 157.
25. Kazanskij A.G. Tonkoplyonochnye kremnievye solnechnye ehlementy na gibkikh podlozhkakh // REhNSIT. Radioehlektronika. 2015. T. 7. № 1.
26. High-efficiency thin-film InGaP/InGaAs/Ge tandem solar cells enabled by controlled spalling technology / D. Shahrjerdi, S. W. Bedell, C. Ebert et al. // Applied Physics Letters. 2012. Vol. 100.
27. Jahandardoost M., Walkons C., Bansal S. Degradation behavior of CIGS solar Cells: A parametric analysis // Solar Energy. 2023. T. 260.
28. Gibkij modul' solnechnoj batarei / V.P. Nadorov, M.B. Kagan, V.F. Ivanov i dr. // Patent RF: RU2234166C1. 2004.
29. Emel'yanov V.M., Kalyuzhnyj N.A., Mintairov S.A. Mnogoperekhodnye solnechnye ehlementy s brehggovskimi otrazhatelyami na osnove struktur GaInP/GaInAs/Ge // Fizika i tekhnika poluprovodnikov. 2010. T. 44. Vyp. 12.
30. Development and production of European III-V multi-junction solar cells / M. Meusel, W. Bensch, T. Bergunde et al. // 22nd European Photovoltaic Solar Energy Conference. 2007.
31. Rodriguez E. Solar Cell Efficiency vs. Module Power Output: Simulation of a Solar Cell in a CPV Module //Solar Cells - Research and Application Perspectives. 2013.
32. Shvarts M.Z. Modeli i metody otsenok i prognozirovaniya radiatsionnoj stojkosti A3V5 FP // Doklad NTS AO «NPP “Kvant”». 2021.
33. High-efficiency thin-film InGaP/InGaAs/Ge tandem solar cells enabled by controlled spalling technology / D. Shahrjerdi, S. W. Bedell, C. Ebert et al. //Applied Physics Letters. 2012. Vol. 100.

Comments

No posts found

Write a review
Translate