Additional sources and materials
1. Zernov A.S., Nikolaev V.D. Opyt ehkspluatatsii solnechnykh batarej sluzhebnogo modulyamezhdunarodnoj kosmicheskoj stantsii // Kosmicheskaya tekhnika i tekhnologii. Opyt ehkspluatatsii solnechnykh batarej sluzhebnogo modulya.2016. № 1. Vyp. 12.
2. Analiz konstruktsij perspektivnykh solnechnykh batarej kosmicheskikh apparatov / M.V. Ryabtseva,A.A. Lebedev, A.A. Naumova i dr. // Inzhenernyj zhurnal: nauka i innovatsii. 2022. Vyp. 3.
3. SCREAM: A new code for solar cell degradation prediction using the displacement damage dose approach / S.R. Messenger, E.M. Jackson, Warner J.H. et al. // 35th IEEE Photovoltaic Specialists Conference. 2010.
4. Kuz'mina N.A. Sistema ehnergosnabzheniya kosmicheskogo apparata // Reshetnyovskie chteniya. Sistemy upravleniya, kosmicheskaya navigatsiya i svyaz'. 2017.
5. Kozhevnikova L.A. Solnechnye ehlementy i batarei kosmicheskogo primeneniya. Reshetnyovskie chteniya. 2018.
6. Modeling the effect of 1MeV electron irradiation on the performance of n+-p-p+ silicon space solar cells / A. Hamache, N. Sengouga, A. Meftah et al. // Radiation Physics and Chemistry. 2016. Vol. 123.
7. Obzor sovremennykh fotoehlektricheskikh preobrazovatelej kosmicheskogo naznacheniya na osnove soedinenij AIIIBV / E. V. Slyschenko, A.A. Naumova, A.A. Lebedev i dr. // Sibirskij zhurnal nauki i tekhnologij. 2018. T. 19. № 2.
8. Tam zhe.
9. Skabara P., Malik M.A. Nanostructured Materials for Type III Photovoltaics // Nanoscience & Nanotechnology. Royal Society of Chemistry. 2017.
10. Murphy O. Optimizing the fabrication process for next generation nano-textured solar cells with high conversion efficiency using industrially viable solar cell processes. Technological University Dublin. 2022.
11. Emel'yanov V.M., Kalyuzhnyj N.A., Mintairov S.A. Mnogoperekhodnye solnechnye ehlementy s brehggovskimi otrazhatelyami na osnove struktur GaInP/GaInAs/Ge // Fizika i tekhnika poluprovodnikov. 2010. T. 44. Vyp. 12.
12. Investigation of the effect of chemical pre-treatment on uniformity of the silicon wafer texturing for manufacturing a solar cell / D. Kudryashov, A. Gudovskikh, A. Rodin et al. 2018. J. Phys: Conf.Series. № 1124.
13. Tam zhe.
14. 00-period, 1.23-eV bandgap InGaAs/GaAsP quantum wells for high-efficiency GaAs solar cells: Toward current-matched Gebased tandem cells /H. Fujii, K. Toprasertpong, Yu. Wang et al. // Prog.Photovolt., Res. Appl.- 2013. Vol. 22.
15. Chaffin R.J., Osbourn G.C. Quantum well multijunction photovoltaic cell // Patent USA: US4688068A. 1987.
16. Kotamraju S., Sukeerthi M., Puthanveettil S.E. Modeling of InGaP/InGaAs-GaAsP/Ge multiple quantum well solar cell to improve efficiency for space applications // Solar Energy. 2019. Vol. 186.
17. N incorporation and optical properties of GaAsNepilayers on (311) A/B GaAs substrates / X. Han,H. Suzuki, J.-H. Lee et al. // Journal of Physics D: Applied Physics. 2011. Vol. 44. № 1.
18. Shvarts M.Z. Modeli i metody otsenok i prognozirovaniya radiatsionnoj stojkosti A3V5 FP //Doklad NTS AO «NPP “Kvant”». 2021.
19. Rodriguez E. Solar Cell Efficiency vs. Module Power Output: Simulation of a Solar Cell in a CPV Module // Solar Cells - Research and Application Perspectives. 2013.
20. Wafer-bonded GaInP / GaAs / Si solar cells with 30 % efficiency under concentrated sunlight / S. Essig, J. Benick, M. Schachtner et al. / IEEE J. Photovoltaics. 2015. Vol. 5. № 3.
21. III-V-on-silicon solar cells reaching 33 % photoconversion efficiency in two-terminal configuration / R. Cariou, J. Benick, F. Feldmann et al. //Nature Energy. 2018. Vol. 3. № 4.
22. Kazanskij A.G. Tonkoplyonochnye kremnievye solnechnye ehlementy na gibkikh podlozhkakh //REhNSIT. Radioehlektronika. 2015. T. 7. № 1.
23. Mughal Sh., Sood Y.R., Jarial R.K. A Review on Solar Photovoltaic Technology and Future Trends // International Journal of Scientific Research in Computer Science. Engineering and Information Technology. 2018. Vol. 4. № 1.
24. Efficiency improvement of CIGS solar cells by a modified rear contact / W. Li, X. Yan, W.-L. Xu, J. Long et al. / Solar Energy. 2017. T. 157.
25. Kazanskij A.G. Tonkoplyonochnye kremnievye solnechnye ehlementy na gibkikh podlozhkakh // REhNSIT. Radioehlektronika. 2015. T. 7. № 1.
26. High-efficiency thin-film InGaP/InGaAs/Ge tandem solar cells enabled by controlled spalling technology / D. Shahrjerdi, S. W. Bedell, C. Ebert et al. // Applied Physics Letters. 2012. Vol. 100.
27. Jahandardoost M., Walkons C., Bansal S. Degradation behavior of CIGS solar Cells: A parametric analysis // Solar Energy. 2023. T. 260.
28. Gibkij modul' solnechnoj batarei / V.P. Nadorov, M.B. Kagan, V.F. Ivanov i dr. // Patent RF: RU2234166C1. 2004.
29. Emel'yanov V.M., Kalyuzhnyj N.A., Mintairov S.A. Mnogoperekhodnye solnechnye ehlementy s brehggovskimi otrazhatelyami na osnove struktur GaInP/GaInAs/Ge // Fizika i tekhnika poluprovodnikov. 2010. T. 44. Vyp. 12.
30. Development and production of European III-V multi-junction solar cells / M. Meusel, W. Bensch, T. Bergunde et al. // 22nd European Photovoltaic Solar Energy Conference. 2007.
31. Rodriguez E. Solar Cell Efficiency vs. Module Power Output: Simulation of a Solar Cell in a CPV Module //Solar Cells - Research and Application Perspectives. 2013.
32. Shvarts M.Z. Modeli i metody otsenok i prognozirovaniya radiatsionnoj stojkosti A3V5 FP // Doklad NTS AO «NPP “Kvant”». 2021.
33. High-efficiency thin-film InGaP/InGaAs/Ge tandem solar cells enabled by controlled spalling technology / D. Shahrjerdi, S. W. Bedell, C. Ebert et al. //Applied Physics Letters. 2012. Vol. 100.
Comments
No posts found